How-to: asap fit¶
asap fit sub_command is for fitting to certain properties of the data using the design matrix generated by the command asap gen_desc.
Overview of sub-commands¶
sub-commands that controls which algorithm to use for the fit:
option |
description |
|---|---|
kernelridge |
Kernel Ridge Regression (with sparsification) |
ridge |
Ridge Regression |
asap fit¶
Fit a machine learning model to the design matrix and labels. This command function evaluated before the specific ones, we setup the general stuff here, such as read the files.
asap fit [OPTIONS] COMMAND [ARGS]...
Options
-
-f,--fxyz<fxyz>¶ Input file that contains XYZ coordinates. See a list of possible input formats: https://wiki.fysik.dtu.dk/ase/ase/io/io.html If a wildcard * is used, all files matching the pattern is read.
-
-p,--prefix<prefix>¶ Prefix to be used for the output file.
-
--only_use_species<only_use_species>¶ Only use the atomic descriptors of species with the specified atomic number. Only makes sense if already using –use_atomic_descriptors.
-
-ua,--use_atomic_descriptors,--use_atomic¶ Use atomic descriptors instead of global ones.
-
-dm,--design_matrix<design_matrix>¶ Location of descriptor matrix file or name of the tags in ase xyz file the type is a list ‘[dm1, dm2]’, as we can put together simutanously several design matrix.
-
-y,--y<y>¶ Location of a file or name of the properties in the XYZ file
-
-nbs,--normalized_by_size¶ Normalize y by the number of atoms in each frame.
- Default
False
-
-t,--test_ratio,--test<test_ratio>¶ Test ratio.
- Default
0.05
-
-lc,--learning_curve<learning_curve>¶ the number of points on the learning curve, <= 1 means no learning curve
- Default
-1
-
-lcp,--lc_points<lc_points>¶ the number of sub-samples to take when compute the learning curve
- Default
8
kernelridge¶
Kernel Ridge Regression (with sparsification)
asap fit kernelridge [OPTIONS]
Options
-
--sigma<sigma>¶ the noise level of the signal. Also the regularizer that improves the stablity of matrix inversion.
-
-k,--kernel<kernel>¶ Kernel function for converting design matrix to kernel matrix.
- Default
linear
- Options
linear|polynomial|cosine
-
-kp,--kernel_parameter<kernel_parameter>¶ Parameter used in the kernel function.
-
-s,--sparse_mode<sparse_mode>¶ Sparsification method to use.
- Default
fps
- Options
random|cur|fps|sequential
-
-n,--n_sparse<n_sparse>¶ number of the representative samples, set negative if using no sparsification
- Default
100
Note
More documentation to be added.