How-to: asap fit¶
asap fit sub_command
is for fitting to certain properties of the data using the design matrix generated by the command asap gen_desc
.
Overview of sub-commands¶
sub-commands that controls which algorithm to use for the fit:
option |
description |
---|---|
kernelridge |
Kernel Ridge Regression (with sparsification) |
ridge |
Ridge Regression |
asap fit¶
Fit a machine learning model to the design matrix and labels. This command function evaluated before the specific ones, we setup the general stuff here, such as read the files.
asap fit [OPTIONS] COMMAND [ARGS]...
Options
-
-f
,
--fxyz
<fxyz>
¶ Input file that contains XYZ coordinates. See a list of possible input formats: https://wiki.fysik.dtu.dk/ase/ase/io/io.html If a wildcard * is used, all files matching the pattern is read.
-
-p
,
--prefix
<prefix>
¶ Prefix to be used for the output file.
-
--only_use_species
<only_use_species>
¶ Only use the atomic descriptors of species with the specified atomic number. Only makes sense if already using –use_atomic_descriptors.
-
-ua
,
--use_atomic_descriptors
,
--use_atomic
¶
Use atomic descriptors instead of global ones.
-
-dm
,
--design_matrix
<design_matrix>
¶ Location of descriptor matrix file or name of the tags in ase xyz file the type is a list ‘[dm1, dm2]’, as we can put together simutanously several design matrix.
-
-y
,
--y
<y>
¶ Location of a file or name of the properties in the XYZ file
-
-nbs
,
--normalized_by_size
¶
Normalize y by the number of atoms in each frame.
- Default
False
-
-t
,
--test_ratio
,
--test
<test_ratio>
¶ Test ratio.
- Default
0.05
-
-lc
,
--learning_curve
<learning_curve>
¶ the number of points on the learning curve, <= 1 means no learning curve
- Default
-1
-
-lcp
,
--lc_points
<lc_points>
¶ the number of sub-samples to take when compute the learning curve
- Default
8
kernelridge¶
Kernel Ridge Regression (with sparsification)
asap fit kernelridge [OPTIONS]
Options
-
--sigma
<sigma>
¶ the noise level of the signal. Also the regularizer that improves the stablity of matrix inversion.
-
-k
,
--kernel
<kernel>
¶ Kernel function for converting design matrix to kernel matrix.
- Default
linear
- Options
linear|polynomial|cosine
-
-kp
,
--kernel_parameter
<kernel_parameter>
¶ Parameter used in the kernel function.
-
-s
,
--sparse_mode
<sparse_mode>
¶ Sparsification method to use.
- Default
fps
- Options
random|cur|fps|sequential
-
-n
,
--n_sparse
<n_sparse>
¶ number of the representative samples, set negative if using no sparsification
- Default
100
Note
More documentation to be added.