Source code for asaplib.hypers.hyper_acsf

"""
tools for generating hyperparameters for ACSF descriptors
"""
import json
import numpy as np

from .univeral_length_scales import uni_length_scales, system_pair_bond_lengths, round_sigfigs
from ..io import NpEncoder

"""
Automatically generate the hyperparameters of ACSF descriptors for arbitrary elements and combinations.

## Heuristics:
  * Get the length scales of the system from
    * maximum bond length (from equilibrium bond length in lowest energy 2D or 3D structure)
    * minimal bond length (from shortest bond length of any equilibrium structure, including dimer)
  * Apply a scaling for these length scales
    * acsf cutoff = maximum bond length * 1.56 * scalerange
    * rmin = minimal bond length, distance in Angstrom to the first nearest neighbor.
         Eliminates the symmetry functions that investigate the space between 0 and rmin.
    * N = the number of each type of SFs. Determined by
          N = min(int(sharpness*(cutoff-rmin)/0.5), 5)
## Example
"""

[docs]def universal_acsf_hyper(global_species, facsf_param, dump=True, verbose=True): """ format: acsf_js = {'acsf1': {'type': 'ACSF', 'cutoff': 2.0, 'g2_params': [[1, 1], [1, 2], [1, 3]], 'g4_params': [[1, 1, 1], [1, 2, 1], [1, 1, -1], [1, 2, -1]]}} """ if facsf_param == 'smart' or facsf_param == 'Smart' or facsf_param == 'SMART': acsf_js = gen_default_acsf_hyperparameters(list(global_species), scalerange=1.2, sharpness=1.0) elif facsf_param == 'minimal' or facsf_param == 'Minimal' or facsf_param == 'MINIMAL': acsf_js = gen_default_acsf_hyperparameters(list(global_species), scalerange=0.85, sharpness=1.0) elif facsf_param == 'longrange' or facsf_param == 'Longrange' or facsf_param == 'LONGRANGE': acsf_js = gen_default_acsf_hyperparameters(list(global_species),scalerange=1.8, sharpness=1.2) elif isinstance(facsf_param, float): acsf_js = gen_default_acsf_hyperparameters(list(global_species),scalerange=1.0, sharpness=1.0, cutoff=facsf_param) else: raise IOError('Did not specify acsf parameters. You can use [smart/minimal/longrange] or set an explicit cutoff.') if verbose: print(acsf_js) if dump: with open('smart-acsf-parameters', 'w') as jd: json.dump(acsf_js, jd, cls=NpEncoder) return acsf_js
[docs]def gen_default_acsf_hyperparameters(Zs, scalerange=1.0, sharpness=1.0, verbose=False, cutoff=None): """ Parameters ---------- Zs : array-like, list of atomic species scalerange: type=float, scale the cutoffs of the SFs. sharpness: type=float, sharpness factor for atom_width, default=1.0, larger sharpness means more resolution, and more SFs will be generated. verbose: type=bool, default=False, more descriptions of what has been done. """ # check if the element is in the look up table for Z in Zs: if str(Z) not in uni_length_scales: raise RuntimeError("key Z {} not present in length_scales table".format(Z)) shortest_bond, longest_bond = system_pair_bond_lengths(Zs, uni_length_scales) if verbose: print(Zs, "range of bond lengths", shortest_bond, longest_bond) # cutoffs & shortest length if cutoff is None: cutoff = max(float(round_sigfigs(longest_bond * 1.3 * float(scalerange), 2)),2.0) rmin = shortest_bond N = min(int(sharpness*(cutoff-rmin)/0.5), 5) if verbose: print("Considering cutoff and rmin", cutoff, rmin) index = np.arange(N+1, dtype=float) shift_array = cutoff*(1./N)**(index/(len(index)-1)) eta_array = 1./shift_array**2. _2_body_params = [] for fel in Zs: for sel in Zs: if verbose: print("# symfunctions for type %s 2 %s" %(fel, sel)) for eta in eta_array: # G2 with no shift if 3*np.sqrt(1/eta) > rmin: _2_body_params.append([float(round_sigfigs(eta, 2)), 0.]) if verbose: print("symfunction_short %s 2 %s %.4f 0.000 %.3f" %(fel, sel, eta, cutoff)) for i in range(len(shift_array)-1): # G2 with shift eta = 1./((shift_array[N-i] - shift_array[N-i-1])**2) if shift_array[N-i] + 3*np.sqrt(1/eta) > rmin: _2_body_params.append([float(round_sigfigs(eta,2)), float(round_sigfigs(shift_array[N-i],2))]) if verbose: print("symfunction_short %s 2 %s %.4f %.3f %.3f" %(fel, sel, eta, shift_array[N-i], cutoff)) eta_array = np.logspace(-3,0,N//2) zeta_array = [1.000, 4.000, 16.000] _3_body_params = [] for fel in Zs: ang_Zs = list(Zs) for sel in Zs: for tel in ang_Zs: if verbose: print("# symfunctions for type %s 3 %s %s" %(fel, sel, tel)) for eta in eta_array: for zeta in zeta_array: if 3*np.sqrt(1/eta) > rmin: if verbose: print("symfunction_short %s 3 %s %s %.4f 1.000 %.3f %.3f" %(fel, sel, tel, eta, zeta, cutoff)) if verbose: print("symfunction_short %s 3 %s %s %.4f -1.000 %.3f %.3f" %(fel, sel, tel, eta, zeta, cutoff)) _3_body_params.append([float(round_sigfigs(eta,2)), float(round_sigfigs(zeta,2)), 1]) _3_body_params.append([float(round_sigfigs(eta,2)), float(round_sigfigs(zeta,2)), -1]) acsf_js = { 'acsf-'+str(cutoff):{'type': 'ACSF', 'cutoff': 2.0, 'g2_params': _2_body_params, 'g4_params': _3_body_params }} return acsf_js